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ABSTRACT

We analyze a particular scheme for controlling a multiaccess channel. We prove that this scheme

is stable and may achieve throughputs up to l/e.
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I. DESCMIPTION OF THE CONTROL SCHEME.

Consider the usual slotted ALOHA model, under the infinite source assumption and ternary
feedbackt, In more detail, there is an infinite number of stations and, at the beginning of any time
slot, each station may have at most one packet to transmit. Any station with an available packet
may decide to attempt transmission (possibly using a probabilistic rule) or to decide to defer this
attempt for later., Let Y be the number of attempted transmissions during the t-th slot. If Yt = 0
we say that a "hole3 has occured. If Y = 1, the (single) attempted trasnmission is succesful.
Finally, if Yt > 2, there is a collision and no packet is succesfully transmitted. At the end of the
t-th slot all sAions learn whether a hole, a success, or a collision has occured. Accordingly, we
define the ariable Z, to be equal to Y, if Yt < 2, and equal to 2, if Yt _: 2. The information
available to any station at the beginning of the t-th slot is the collection of variables Z 1, ..., Zt- 1.
The decision of a station, whether it will attempt transmission during the t-th slot, is constrained
to. be a function of Z1 ,..., Zt_ 1 and possibly an internal random number generator.

We assume that during the t-th slot a random number At of new stations generate a packet which

they would like to eventually transmit. We assume that the random variables At are independent
and identically distributed according to a Poisson distribution with mean A. Let Nt be the number
of stations with a packet available for transmission at the beginning of the t-th slot. Then, Nt
evolves as follows: Nt+z = N + At - 1, if Zt = 1; Nt+I = Nt + At, otherwise.

-The objective is to find a probabilistic rule that lets each station decide at any given time, using
0- oy the information available to it, whether it will transmit or not. (Of course this rule will be
used only by those stations that have an available packet.) This rule should be stable, that is,
the stochastic process Nt should not "explode, in a suitable mathematical sense. One particular
scheme which accomplishes this objective was presented in [2-3]. / / .- . ,W

Rivest [1] has suggested the following strategy. At the beginning of the Mth slot, each station has: '

available the same estimate 't of Nt. Each station with an available packet attempts transmission
with probability i/kt. Conditioned on 9t, the decisions of different stations are statistically
independent and independent of any other events that have occured in the past. (It is not hard

to show that if Nt is large and if 2t = Nt, then the above choice of transmission probability is
optimal, in the sense that it maximizes the probability of a succedul transmission during the t-th
slot.) The novelty of the scheme lies in the procedure for updating the estimate i9t, which is the
following:
(i) If Z, < 2, then *t+j = max(l, 2t - 1+S}; (1.1)
(ii) If Zt = 2, then Itt+9 = t, + L + 1. (1.2)
In these equations, 1 is an estimate of A.

This updating procedure is motivated in (1] as an approximation of the exact Bayesian formula
for updating the optimal estimate E[Nt I Zo, ...,Zt 1 1. We define X, = (Nt, N29t) and we notice that,
for any fixed values of A and 1, Xt is a Markov process taking values in a countable state space,
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assuming that N is initialized with an integer value.

In this paper we analyze the stability of this scheme. Our main results can be summarized as

follows:
(a) If A is known exactly, and therefore A = A, then the Markov process (Nt, 19t) is geometrically

ergodic if A < e- 1. We should point out here that no control strategy in which all stations use the

same probability of transmission could achieve throughput larger than or equal to • - 1 and, in this

sense, the above scheme is optimal.

(b) If A is not known exactly, but rather an inexact estimate 1 is used in the updating equations

(1.1), (1.2), then the scheme is stable (geometrically ergodic) if A < e, < e- 1 and A < 1. We

also provide a heuristic argument which suggests that if A < A and if the difference between A and

A exceeds a certain threshold, then instability may result, even if A < e- 1 .

In [1], it is suggested that 1 could be formed by estimating A on-line. In particular, one may let

At, the estimate at time t, be equal to the number of succesful transmissions so far, divided by the

time elapsed. Alternatively, one may use a sliding window, or discount past successes, so that the

- estimators it retain their adaptivity, as t --* oo. However, our results suggest that letting A e-1

may be an equally reasonable (and possibly more robust) alternative than on-line estimation of A.

Refemnce [4] discusses a related class of schemes which have been introduced and analyzed in

[5]. The discussion of [41 shows that the scheme introduced in [1], with A = e- 1 , is a special case

of those analysed in [5] and that, in particular, it is known that the scheme is stable. In this light,

the only contribution of this paper is a possibly new method for obtaining this convergence result.

In fact, we have not yet had access to reference [5] to see whether the proof technique is different

or not.

U. MATHEMATEL PRELIMINARIES,

A random variable W is exponential type if there exist d > 0, D such that E[edIWI] _< D. Let

(Xh} be an irreducible aperiodic Markov chain on a countable state space. We say that {Xk} is

geometrically ergodic if there exists a state z such that the stopping time r = min{t > 0 : Xt = z}

is exponential type, for any initial state Xo.

Let (Wt) be a sequence of random variables adapted to an increasing family (7t} of a-fields. We

say that (Wt, T) is exponential type if there exist d > 0, D, such that

E[edIW*+-W"It] < D, Vt > 0. (2.1)

We will use the following result of [2].

Proposition 2.1: Suppose that {Wt, T} is exponential type and that for some e > 0, a E 1R, we have

E[Wt+1 - W,; Wt > a I I] -c, Vt 0. (2.2)

Then the stopping time r = min(t > 0: Wt _ a) is exponential type.
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We will also need the following result which is proved in a way similar to the results of [2].

Proposition 2.2: Let {Wt, Ft} be exponential type, with WO = 0, and let J be a positive integer.
Let r be a stopping time (with respect to {7}) and assume that there exists some e > 0 such that
E[Wt+1 - Wt; r > t I At] : -e, Vt. Then there exists some B (depending only on d, D, c, but not
on J or the statistics of r) such that E[max{O, Wj }; r > J I 0] < B.

Proof: Since {Wt, Tt} is exponential type and using our assumption on Wt+1 - W,, there exists
some q > 0 (depending only on d, D, e) such that

Ee(W+ r > tI 1, Vt. (2.3)

(This is proved in Lemma 2.1 of [2].) We use the inequality max{O, z} !5 .1 e, Vz, to obtain

E[max{0,W r}; r > J Io] = E[max{0,WJ^I}; r > JI To] !5 E[e'WJA; r > J 170] < E[CWJA " I7].

We now notice that the stochastic process enWkA is a supermartingale, as a consequence of (2.3).
Therefore, E[e WJA] < 1, which gives the desired result with B =

r31. MAIN RESULT.

Theorem 3.1: If 0 < A < e- 1, 0 < A < e-1 and A < A, then the Markov process Xt, defined in
Section I, is geometrically ergodic.
Proof: We will be using the notation Nt - - Nt and A = - A. We also define It as the o-field
generated by {A., 1 , N., N : < t}. We start by establishing approximate formulas for the drift
of Nt and R,. We define two functions on the state space: c(N,N) = E[Nt+I - Nt I Xt = (N, k)J
and d(N, r) = E[NVt+1 - I Xt = (N, N)]. Using the binomial probability formulas, we obtain

c(N, f) = A N- (1- - (3.1)

1 1t
d(N, N)N) (1- N) + A. (3.2)

We also introduce a function f: [0,oo) X (0,e -1 ] -e I, defined by

f(a, A) = _ (1 - ae-* - e-") - e- * + A. (3.3)

3 There exists a function h N R-+ R such that limM_... h(M) = 0 and such that, if
N >_ M or R _ M, then _11.

JC(N, ) (A - te-") 1 h(M), Dit ib..tio.,/

Id(N, .) - f(a,X)I < h(M), Availability Codes
Aail and /or4 Dist Special



where a = N

Prf: (Outline) For any fixed value of a, the result is immediate from the formulas (3.1), (3.2)
and the fact lim*_, (1 - - e . The fact that the bounds are actually uniform over all a

may be easily demonstrated by working out an exact expression for the approximation error, or by
appealing to the similar bounds developed in [3]..

We now study the properties of the function f.

Lemma 3.2: (i) For any A, the function f is strictly increasing in a.
(ii) For any A E (0,e- 1 ], there exists a unique a = g(l) E (0,1] such that f(c,) = 0.
(iii) If A E (0, e- 1 ) n (0,A], then g(i)e9 ( ) > A.
Proof:(i) This is implied by the inequality 2(A) = _-ze- a + e- a > 0, Va > 0.
(ii) Existence of a solution in the desired range follows from f(0,A) 1 - + A < 0,f(IA) = ( > 0
and the continuity of f . Uniquenes follows from the strict monotonicity of f.

(iii) Suppose first that A = A. Then, g(l) = g(O) - 1 and g(0)e-9( 0 ) e- 1 > A, as desired. So
suppose that A $ 3. We use the equation A (g(A),A) 0, to obtain

dg ()--
- g9 ( ) +9A

Thus,
- (i)e - g( i ) ] =--[ g(i)]e - 0( l ) A(i) : -1 >I

dA d!A2~i

Hence, for A > 0, g(!)e - I(I) > g(O)e-( 0 ) - - -C' - A .

From now on we use 6 to denote the value of g(1). Given any -1 E (0, P) and M > 0 we partition
the state space into four regions as follows. We let

N

N

N

R7-, = f(, M _ , T < - ,

R.+M = {(N,,#): N >M, N > 1+-/),
N

* = {(N,*): N < M, < M).

We also let RM = RM U R +m.

I ~mmL3:There exist some M > 0, y > 0, 6 > 0, such that 5-1 < 6 and

c(N,N) < -61, V(N,.N) E S5,,M, (3.4)

d(N, -6, Y(N, E R5,M, (3.5)



d(N,.,9) > 5, V(N, ) R+  (3.6)

Proof:Notice that A - ae-* is negative when a = 1 (because A < e- 1) as well as when a =
(because of Lemma 3.2(wi/)) and is monotonic in between. Furthermore, it is a continuous function
of a and therefore there exist -y > 0 and 61 > 0 such that A - ae -a < -6 1, Va E [/ - 5'y, 1 + 5y].
Hence, using Lemma 3.1, c(N,N) _ -61 + h(M) < - , V(N, *) E S5,M, provided that we take
M large enough so that h(M) : 5. This proves (3.4) and fixes our choice of -y. For inequalities
(3.5) and (3.6), we use the strict monotonicity of f to conclude that f(a, 1) _ f(/8 - -, A) < 0,
Va < / -y and f(a, 1) _ f(1 +y, A) > 0, Va > 1+"-. The desired result follows again by choosing

M large enough and using Lemma 3.1. .

From now on we assume that M and y have been fixed and that inequalities (3.4)-(3.6) hold. We

introduce a Lyapunov function which exploits the properties of the drift of (Nt, 19t) in the regions
we introduced earlier. Namely, we let

V(N, r )=max{N, I + 32 (N - -3) N)} (3.7)3--' 1 - 0 "- 3-y N}(37

and notice that the first, second and third expression inside the brackets becomes effective when

N belongs to S3,~m, R3S,M, R3,M, respectively. Unfortunately, for any A > 0, the inequality
E[V(Nt+,, t+,i) I(Nt, *t)] :_ V(Nt,*t) - A fails to hold at the boundary between adjacent
regions. However, we will show below that, if J is chosen large enough, then there exists some

A > 0 such that

E[V(N+.,, *,+,r) j (Nt, ,) = (N, 9)] V(N, R) - A. V(N, QM+J (3.8)

Our method consists of estimating the decrease in V by separately considering likely and unlikely
events, starting with unlikely ones. Given some integer J and some t > 0, we define a stopping
time rj by rj = min{s > t : E'*=t A; > J}, where AA, is the number of new packets generated at
time k. We then have the following two auxiliary results whose proof is straightforward (using, for
example, the same methods as in the proof of Proposition 2.2) and is omitted:

lim JP(r. <J) = 0, (3.9)J-600

Jim E[clJ-+cZAk; r, < J]-0, Vc1,c2 . (3.10)
k=t

We notice that IN,+ -NI < 1 + At and IN*+I - *l 2 < 2 + 1 < 3. It then follows from
(3.7) that

IV(N,+, *,t+) - V(N,, k,) < max{,, 1+3,y 1- 3"y (4+A,) C(1+A,),-3y 1-6+3 A  <
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for some constant C. Therefore, there exists some C, independent of J, such that

t+3t

"! ItV(N,+,, 1 ,+ - v(N,, f,)t _ c C+CZA,.

Using (3.10), we see that if J is chosen large enough, then

can be made as close to zero as desired.

We now consider the event rj > J.

Lemma 3.4: J can be chosen large enough so that, if r, > J, then the following are true:

(i) If X, E S2,1,M+j2, then Xt+k E Ss-,M, Vk E [0, J.
(ii) If Xt E S,, n RM+j,, then Xt+k E Sr ,,3-Y +2 t [o,, E E [0, J]
(iii) If X, E R,,+' ,, then Xt+ E R+,M, Vk •

(iv) Statements (ii) and (iii) remain true if we replace R+ by R.
Proof: If rj > J, then INt+k - Nt _ 3J and INt+k - Nt -2J, Vk E [0, J]. On the other hand,
notice that the distance between S2,,M+J2 and the complement of S3,M is of the order of J 2 and

part (i) follows. The proof is similar for the remaining parts of the Lemma and is omitted. 0

From now on, we assume that J is large enough so that the statements of Lemma 3.4 hold. We

start by considering the case (Nt, Rt) E S2., 1m+j2. Then, V(Nt, ht) = N,. If, in addition, Tj > J,
then (N,+k,1'I,+k) E S3,yM+J2, Vk E [0, J] (by Lemma 3.4) and V(Nt+,,Nt+j) = Nt+j. Thus,

using (3.4) and assuming that J is large enough so that P(r, > J) > . (which is possible, due to

(3.9)) we obtain

E[/(Nt+J, t+J) - V(Nt,t); r > Jj I (Nt, t)] - E[Nt+J - Nt; r, > J (Nt, kt)]

E4[Ec(N,+,,*+k,); ri > I (N,,Pt)] < -6JP(,-j > J) < -_y,

-i where 6 > 0 is the conetant of Lemma 3.3.

Next we consider the case (Nt, ]ht) E R+,M+.2. The same argument as above yields, for J large

enough,

" E[V (N,+,,#,+.) - V(N,, ,); ri > JI (N,, At)] = I+ 3-E-Rt+ + f,; ri > J- (Nt, ht)]

li- E[d(Nt+i, ,+k); rj' > JI (N,, h,)] < 1 + 23 6J

A similar argument applies to the case where Xt 6 RE +J2.

I •



N" We now consider the slightly more complicated case where (N,, Nt) E S4,y,M+j. and (Nt, t)

S2.,,M+j2. There are two subcases to consider: a) E (1 + 2,1+4-y] and b) N E [ -4-1,/- 2-).

We only consider the first subcase, since the argument for the second one is identical. We therefore

have V(Nt, t) = max{N, - 1+37 Rt}. Furthermore, if rj > J, then (Nt+k, kt+k) stays inside

Sr,, m Mn R+ , VkE [0, J]. Thus, V(Nt+,, Nt+) = max{Nt+j,,- I Nt+j. Consequently,

E.:.E[V(Nt+j, *t+j) -V(Nt,,*t); ri > J I(Nt, *,)] <5

Elmax{Nt+-, - N,, - 3"- - & ,)}; rj > J< (Nt, *t) <

E[max{O, Nt+j -N + i}; ri > J I (Nt, ,')] +

1 + 3'3-_ -+- 3--E[max{0,- j + N, + -; > JI (Nt, R)] + E[- ; > JI (N,, *t)]. (3.11)

Here, 6 is the constant of Lemma 3.3 and we have used the inequalities max{a, b} - max{c, d}

max{a - c, b - d} and max{a, b} < max{0, a + f} + max{0, b + f} - f, with f = 6 We consider

the first summand in the right hand siide of (3.11). Let Wk = Nt+,, - Nt + --.. Clearly, {W , 1+k}

is exponential type because IWk+ - WGI 5 1 + At+k. Furthermore, using Lemma 3.3,

-. [Wk+l - Wk; ri > J I irk] = F[Nt,+k+l - Nt+A, + rJ > J I Ft+k1 <5-.5 2

Thus, Proposition 2.2 applies and shows that the first summand in (3.11) is bounded above by

some B independent 'of J. The same conclusion is obtained, by an identical argument, for the

second summand in (3.11). Finally, the last term in (3.11) is equal to -1-P(r, > J). Taking J

large enough and using (3.9), this term can be made arbitrarily negative. It follows that the right

hand side of (3.11) can become negative and bounded away from zero by proper choice of J. This

concludes the proof of (3.8).

The proof of the theorem may be now completed as follows. Let G = max{1, 1+3 19- }(M+
3-7 '1-#+,

J). Whenever V(Nt,F!) G C, then either N > M + J2 or ff > M + j2 and (3.8) holds.

Furthermore {V(N,, Ft), It} is exponential type. Hence Proposition 2.1 applies and shows that the

stopping time r = min{k : V(Nkj, N kj) < G} is exponential type, for any initial state. From this

it follows easily that the time until (Nt, *t) becomes equal to (0,1) is also exponential type and

concludes the proof of the theorem. .

Remark: It should be clear from the above proof that it is not necessary to assume that the arrival

process At is Poisson or even that the random variables At are independent identically distributed.

One only needs to assume that {At, It} is exponeatial type, in the sense of Section II.

IV. THE CASE WHERE < A.

*II-.. 8
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With a minor modification of the proof in Section III it can be shown that for any fixed A < e-'
there exists some e > 0 such that if IA - A1 < c, then {Xt} is geometrically ergodic. In general,

however, e will depend on A and will tend to zero as A approaches e - .

Suppose now that A is very close to c- 1 and that A - A is positive and sufficiently large. Then,
{Xt} will no longer be ergodic, as indicated by the following argument. If A ; e - 1 , the only way

*. of having a stable (ergodic) process is to have some mechanism that ensures that the probability

of transmission by each station is very close to 1/Nt, at least whenever Nt is large. Equivalently,
we want t p 1. However, when A $1, then N drifts away from zero, because f(1, A) #1, where
f, the function defined in (3.3) (which is the approximate drift of N, according to Lemma 3.1.
Therefore, Xt will tend to spend most of its time in a region where a is bounded away from 1 and,
consequently the probability of a succesful transmission is bounded away from e- 1 . Instability then
results.

One might try to make a similar argument for the case A < A. In this case the probability of a
* succesful transmission is again bounded away from e - 1 . However, since A < A < e- 1, there is less

input traffic to be accommodated and instability does not arise. (This is the essence of part (iii)
of Lemma 3.2.)

It is suggested in [1] that A could be estimated on line, if it is unkown. One possible method [1]
is to let it be the number of succesful transmissions up to time t, divided by t. Such an estimator
loses its ability to adapt to changes in the input traffic statistics, as time goes to infinity. For this
reason an exponential weight was used in [1] to discount old data. It is unclear whether such a
method can achieve stably throughput up to e- '. Given the result of Section 3, overestimating A
by using the estimate 1 = e- 1 cannot result to instability and this seems to be a reasonable choice.
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